Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Brain Nerve ; 76(4): 391-397, 2024 Apr.
Artículo en Japonés | MEDLINE | ID: mdl-38589283

RESUMEN

Amyloid fibril formation is a general property of proteins and peptides. It is a physicochemical phenomenon similar to crystallization, in which amyloid precursor proteins exceeding solubility precipitate through the breakdown of supersaturation. Using the ultrasonication-forced amyloid fibril inducer HANABI, we have discovered that serum albumin acts as an inhibitor in dialysis-related amyloidosis. Exploring the factors that induce or inhibit amyloid fibril formation using HANABI can lead to the development of early diagnosis and prevention methods for amyloidosis.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Amiloide/metabolismo , Factores Biológicos , Amiloidosis/etiología , Amiloidosis/metabolismo , Péptidos/metabolismo
2.
ACS Chem Neurosci ; 15(8): 1643-1651, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38546732

RESUMEN

The rapid amplification and sensitive detection of α-synuclein (αSyn) seeds is an efficient approach for the early diagnosis of Parkinson's disease. Ultrasonication stands out as a promising method for the rapid amplification of αSyn seeds because of its robust fibril fragmentation capability. However, ultrasonication also induces the primary nucleation of αSyn monomers, deteriorating the seed detection sensitivity by generating seed-independent fibrils. In this study, we show that an addition of surfactants to the αSyn monomer solution during αSyn seed detection under ultrasonication remarkably improves the detection sensitivity of the αSyn seeds by a factor of 100-1000. Chemical kinetic analysis reveals that these surfactants reduce the rate of primary nucleation while promoting the fragmentation of the αSyn fibrils under ultrasonication. These effects are attributed to the modification of the ultrasonic cavitation surface by the surfactants. Our study enhances the utility of ultrasonication in clinical assays targeting αSyn seeds as the Parkinson's disease biomarker.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Ultrasonido , Cinética , Tensoactivos , Amiloide , Proteínas Amiloidogénicas
3.
Amyloid ; : 1-11, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343068

RESUMEN

BACKGROUND: Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of ß2-microglobulin-related amyloids (Aß2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating ß2-microglobulin (ß2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. METHODS: We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography-linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aß2M amyloid fibril formation in vitro. RESULTS: We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as ß2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aß2M amyloid fibril formation. CONCLUSIONS: HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aß2M amyloidogenesis by reducing the amyloid-related proteins.

4.
J Mol Biol ; : 168475, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311232

RESUMEN

From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.

5.
PLoS One ; 18(8): e0286941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37639389

RESUMEN

In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.


Asunto(s)
Anguila Babosa , Animales , Masculino , Biología Computacional , ADN , Eucromatina , Anguila Babosa/genética , Hibridación Fluorescente in Situ
6.
Biophys Physicobiol ; 20(1): e200013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448594

RESUMEN

Much effort has been devoted to elucidate mechanisms of amyloid fibril formation using various kinds of additives, such as salts, metals, detergents, and biopolymers. Here, we review the effects of additives with a focus on polyphosphate (polyP) on amyloid fibril formation of ß2-microglobulin (ß2m) and α-synuclein (αSyn). PolyP, consisting of up to 1,000 phosphoanhydride bond-linked phosphate monomers, is one of the most ancient, enigmatic, and negatively charged molecules in biology. Amyloid fibril formation of both ß2m and αSyn could be accelerated by counter anion-binding and preferential hydration at relatively lower and higher concentrations of polyP, respectively, depending on the chain length of polyP. These bimodal concentration-dependent effects were also observed in salt- and heparin-induced amyloid fibril formation, indicating the generality of bimodal effects. We also address the effects of detergents, alcohols, and isoelectric point precipitation on amyloid fibril formation, in comparison with the effects of salts. Because polyP is present all around us, from cellular components to food additives, clarifying its effects and consequent biological roles will be important to further advance our understanding of amyloid fibrils. This review article is an extended version of the Japanese article, Linking Protein Folding to Amyloid Formation, published in SEIBUTSU BUTSURI Vol. 61, p. 358-365 (2021).

7.
ACS Sens ; 8(7): 2598-2608, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357775

RESUMEN

We developed a multichannel wireless quartz-crystal-microbalance (QCM) biosensor for mechanically studying the on-surface aggregation reaction of α-synuclein (α-syn). We find a quite unusual change in the resonant frequency that eventually exceeds the baseline, which has never been observed during seeding aggregation reaction. By incorporating a growth-to-percolation theory for fibril elongation reaction, we have favorably reproduced this unusual response and found that it can be explained only with formation of an ultrastiff fibril network. We also find that the stiffness of the fibril network grown from artificially prepared twist-type seeds is significantly higher than that from rod-type seeds. Furthermore, the stiffnesses of fibril networks grown from seeds derived from brain tissues of Parkinson's disease (PD) and multiple system atrophy (MSA) patients show a very similar trend to those of rod and twist seeds, respectively, indicating that fibrils from MSA patients are stiffer than those from PD.


Asunto(s)
Técnicas Biosensibles , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Cuarzo , Amiloide
8.
Acta Neuropathol ; 145(5): 573-595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939875

RESUMEN

Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/patología , Lípidos , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
9.
J Biochem ; 174(1): 21-31, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36762787

RESUMEN

Lipocalin-type prostaglandin D synthase (L-PGDS) binds various hydrophobic small molecules. Since we aim to use human L-PGDS as a carrier in a drug delivery system (DDS) for poorly water-soluble drugs, quality control of the protein is indispensable. In this study, we investigated the thermodynamic stability of human L-PGDS under various pH conditions. Differential scanning calorimetry revealed that the thermal unfolding of L-PGDS was an almost-reversible two-state transition between the native and unfolded states over the pH range from 2.5 to 7.4. The linear relationship of ΔH(Tm) to Tm in this pH range gave a heat capacity change (ΔCp) of 4.76 kJ/(K·mol), which was small compared to those commonly found in globular proteins. The temperature-dependent free energy of unfolding, ΔG(T), specified by Tm, ΔH(Tm) and ΔCp, showed a pH dependence with the highest value at pH 7.4 closest to the isoelectric point of 8.3. The small value of Cp resulted in a large value of ΔG(T), which contributed to the stability of the protein. Taken together, these results demonstrated that human L-PGDS is sufficiently thermostable for storage and practical use and can be useful as a delivery vehicle of protein-based DDS.


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Humanos , Termodinámica , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Concentración de Iones de Hidrógeno
10.
Sci Rep ; 12(1): 21373, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494570

RESUMEN

In the Japanese hagfish Eptatretus burgeri, 16 chromosomes (eliminated [E]-chromosomes) have been lost in somatic cells (2n = 36), which is equivalent to approx. 21% of the genomic DNA in germ cells (2n = 52). At least seven of the 12 eliminated repetitive DNA families isolated in eight hagfish species were selectively amplified in the germline genome of this species. One of them, EEEb1 (eliminated element of E. burgeri 1) is exclusively localized on all E-chromosomes. Herein, we identified four novel eliminated repetitive DNA families (named EEEb3-6) through PCR amplification and suppressive subtractive hybridization (SSH) combined with Southern-blot hybridization. EEEb3 was mosaic for 5S rDNA and SINE elements. EEEb4 was GC-rich repeats and has one pair of direct and inverted repeats, whereas EEEb5 and EEEb6 were AT-rich repeats with one pair and two pairs of sub-repeats, respectively. Interestingly, all repeat classes except EEEb3 were transcribed in the testes, although no open reading frames (ORF) were identified. We conducted fluorescence in situ hybridization (FISH) to examine the chromosomal localizations of EEEb3-6 and EEEb2, which was previously isolated from the germline genome of E. burgeri. All sequences were only found on all EEEb1-positive E-chromosomes. Copy number estimation of the repeated elements by slot-blot hybridization revealed that (i) the EEEb1-6 family members occupied 39.9% of the total eliminated DNA, and (ii) a small number of repeats were retained in somatic cells, suggesting that there is incomplete elimination of the repeated elements. These results provide new insights into the mechanisms involved in the chromosome elimination and the evolution of E-chromosomes.


Asunto(s)
Anguila Babosa , Animales , Secuencia de Bases , ADN Ribosómico , Células Germinativas , Hibridación Fluorescente in Situ , Secuencias Repetitivas de Ácidos Nucleicos
11.
Nat Commun ; 13(1): 5689, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192385

RESUMEN

Dialysis-related amyloidosis (DRA), a serious complication among long-term hemodialysis patients, is caused by amyloid fibrils of ß2-microglobulin (ß2m). Although high serum ß2m levels and a long dialysis vintage are the primary and secondary risk factors for the onset of DRA, respectively, patients with these do not always develop DRA, indicating that there are additional risk factors. To clarify these unknown factors, we investigate the effects of human sera on ß2m amyloid fibril formation, revealing that sera markedly inhibit amyloid fibril formation. Results from over 100 sera indicate that, although the inhibitory effects of sera deteriorate in long-term dialysis patients, they are ameliorated by maintenance dialysis treatments in the short term. Serum albumin prevents amyloid fibril formation based on macromolecular crowding effects, and decreased serum albumin concentration in dialysis patients is a tertiary risk factor for the onset of DRA. We construct a theoretical model assuming cumulative effects of the three risk factors, suggesting the importance of monitoring temporary and accumulated risks to prevent the development of amyloidosis, which occurs based on supersaturation-limited amyloid fibril formation in a crowded milieu.


Asunto(s)
Amiloidosis , Diálisis Renal , Amiloide , Amiloidosis/etiología , Amiloidosis/prevención & control , Humanos , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Albúmina Sérica , Microglobulina beta-2
12.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889461

RESUMEN

The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute's concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.


Asunto(s)
Amiloide , Amiloidosis , Amiloide/química , Amiloidosis/metabolismo , Humanos , Soluciones , Termodinámica , Microglobulina beta-2/química
13.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807211

RESUMEN

Amyloid fibrils have been an important subject as they are involved in the development of many amyloidoses and neurodegenerative diseases. The formation of amyloid fibrils is typically initiated by nucleation, whereas its exact mechanisms are largely unknown. With this situation, we have previously identified prefibrillar aggregates in the formation of insulin B chain amyloid fibrils, which have provided an insight into the mechanisms of protein assembly involved in nucleation. Here, we have investigated the formation of insulin B chain amyloid fibrils under different pH conditions to better understand amyloid nucleation mediated by prefibrillar aggregates. The B chain showed strong propensity to form amyloid fibrils over a wide pH range, and prefibrillar aggregates were formed under all examined conditions. In particular, different structures of amyloid fibrils were found at pH 5.2 and pH 8.7, making it possible to compare different pathways. Detailed investigations at pH 5.2 in comparison with those at pH 8.7 have suggested that the evolution of protofibril-like aggregates is a common mechanism. In addition, different processes of evolution of the prefibrillar aggregates have also been identified, suggesting that the nucleation processes diversify depending on the polymorphism of amyloid fibrils.


Asunto(s)
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Insulina/metabolismo , Unión Proteica
14.
J Biol Chem ; 298(7): 102113, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690144

RESUMEN

Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.


Asunto(s)
Complemento C1q , Vía Clásica del Complemento , Animales , Ensayo de Inmunoadsorción Enzimática , Ratones
15.
Nucleic Acids Res ; 50(W1): W90-W98, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544232

RESUMEN

Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of ß-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel ß-structure and antiparallel ß-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Estructura Secundaria de Proteína , Simulación por Computador , Análisis Espectral , Dicroismo Circular
16.
Sci Rep ; 12(1): 351, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013421

RESUMEN

Parkinson's disease is a neurodegenerative disease characterized by the formation of neuronal inclusions of α-synuclein in patient brains. As the disease progresses, toxic α-synuclein aggregates transmit throughout the nervous system. No effective disease-modifying therapy has been established, and preventing α-synuclein aggregation is thought to be one of the most promising approaches to ameliorate the disease. In this study, we performed a two-step screening using the thioflavin T assay and a cell-based assay to identify α-synuclein aggregation inhibitors. The first screening, thioflavin T assay, allowed the identification of 30 molecules, among a total of 1262 FDA-approved small compounds, which showed inhibitory effects on α-synuclein fibrilization. In the second screening, a cell-based aggregation assay, seven out of these 30 candidates were found to prevent α-synuclein aggregation without causing substantial toxicity. Of the seven final candidates, tannic acid was the most promising compound. The robustness of our screening method was validated by a primary neuronal cell model and a Caenorhabditis elegans model, which demonstrated the effect of tannic acid against α-synuclein aggregation. In conclusion, our two-step screening system is a powerful method for the identification of α-synuclein aggregation inhibitors, and tannic acid is a promising candidate as a disease-modifying drug for Parkinson's disease.


Asunto(s)
Antiparkinsonianos/farmacología , Ensayos Analíticos de Alto Rendimiento , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Agregación Patológica de Proteínas , Taninos/farmacología , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Antiparkinsonianos/toxicidad , Benzotiazoles/química , Bioensayo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Células HeLa , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregado de Proteínas , Espectrometría de Fluorescencia , Taninos/toxicidad , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura
17.
Neurochem Int ; 153: 105270, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954259

RESUMEN

Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.


Asunto(s)
Amiloide , Amiloide/metabolismo
18.
Biology (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34827190

RESUMEN

ß2-microglobulin (ß2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N ß2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of ß2m by point mutations affecting the Asp76-Lys41 ion-pair of WT ß2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT ß2m, the exceptional amyloidogenicity of the pathogenic D76N ß2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.

19.
J Biol Chem ; 297(5): 101286, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34626645

RESUMEN

Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of ß2-microglobulin (ß2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of ß2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.


Asunto(s)
Amiloide/química , Agregado de Proteínas , Microglobulina beta-2/química , Aniones/química , Dicroismo Circular , Humanos , Concentración de Iones de Hidrógeno , Cloruro de Sodio/química
20.
ACS Chem Neurosci ; 12(18): 3456-3466, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34467753

RESUMEN

Ultrasonication has been recently adopted in amyloid-fibril assays because of its ability to accelerate fibril formation, being promising in the early stage diagnosis of amyloidoses in clinical applications. Although applications of this technique are expanding in the field of protein science, its effects on the aggregation reactions of amyloidogenic proteins are poorly understood. In this study, we comprehensively investigated the morphology and structure of resultant aggregates, kinetics of fibril formation, and seed-detection sensitivity under ultrasonication using ß2-microglobulin and compared these characteristics under shaking, which has been traditionally adopted in amyloid-fibril assays. To discuss the ultrasonic effects on the amyloid-fibril formation, we propose the half-time heat map, which describes the phase diagram of the aggregation reaction of amyloidogenic proteins. The experimental results show that ultrasonication greatly promotes fibril formation, especially in dilute monomer solutions, induces short-dispersed fibrils, and is capable of detecting ultra-trace-concentration seeds with a detection limit of 10 fM. Furthermore, we indicate that ultrasonication highly alters the energy landscape of an aggregation reaction due to the effect of ultrasonic cavitation. These insights contribute not only to our understanding of the effects of agitation on amyloidogenic aggregation reactions but also to their effective application in the clinical diagnosis of amyloidoses.


Asunto(s)
Calor , Ultrasonido , Amiloide , Cinética , Microglobulina beta-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...